CLASS: XIth SUBJECT: MATHS DPP NO.:1 **DATE:**

Topic:-mathematical reasoning

1. H:Set of holiday, S: Set of Sunday and U:Set of day's Then, the Venn diagram of statement, 'Every Sunday implies holiday' is

2. Simplify $(p \lor q) \land (p \lor \sim q)$

a) p

b) T

c) F

d)q

3. The statement $p \Rightarrow p \lor q$ is

- a) A tautology
- b) A contradiction
- c) Both a tautology and contradiction
- d) Neither a tautology nor a contradiction

4. $p \rightarrow q$ is logically equivalent to

b)
$$\sim p \rightarrow \sim q$$

c)
$$\sim q \rightarrow \sim p$$

d) None of these

5. Which of the following is logically equivalent to $p \land q$?

a)
$$p \rightarrow \sim q$$

b)~
$$p$$
V~ q

c)
$$\sim (p \rightarrow \sim q)$$

d)
$$\sim (\sim p \land \sim q)$$

6. Some triangles are not isosceles. Identify the Venn diagram

7. Which of the following is contingency?

a) *p*∨~*p*

b) $p \land q \Rightarrow p \lor q$

c) $p \land \sim q$

d) None of these

8. $\sim (p \lor q) \lor (\sim p \land q)$ is logically equivalent to

a) ~*p*

b)p

c) q

d) $\sim q$

9.	A compound sentence formed by two simple statements p and q using connective 'or' is called			
	a) Conjunction	b) Disjunction	c) Implication	d) None of these
10.	If p and q are two statements, then $p \lor \sim (p \Rightarrow \sim q)$ is equivalent to			
	a) <i>p</i> ∧~ <i>q</i>	b) <i>p</i>	c) <i>q</i>	d) <i>~p∧q</i>
11.	Let $p \land (q \lor r) = (p \land q) \lor (p \land r)$. Then, this law is known as			
	a) Commutative law	b) Associative law	c) De-Morgan's law	d) Distributive law
12.	If p and q are two statements, then statement $p \Rightarrow q \land \sim q$ is			
	a) Tautology b) Contradiction			
	c) Neither tautology no	ot contradiction	d) None of the above	
13.	Which of the following is logically equivalent to $\sim (\sim p \rightarrow q)$?			
10.	a) $p \wedge q$	b) $p \land \sim q$	c) ~p∧q	d)~ <i>p</i> ∧~ <i>q</i>
	α) ρτιγ	б)рк ч	c) priq	u) pri q
14.	The statement $(p\Rightarrow q)\Leftrightarrow (\sim p\land q)$ is a			
	a) Tautology	b) Contradiction	c) Neither (a) nor (b)	d) None of these
15	A compound sentence formed by two simple statements p and q using connective 'and' is called			
13.	a) Conjunction	b) Disjunction	c) Implication	d) None of these
		_		
16. Let p : is not greater than and q : Pairs is in France Be two statements. Then, $\sim (p \lor q)$ is the				
statement				
	a) 7 is greater than or Pairs is not in France			
	b) 7 is not greater than 4 and Pairs is not in France			
	c) 7 is greater than 4 and Pairs is in France			
	d) 7 is greater than 4 and Pairs is not in France			
17.	If p and q are two simple propositions, then $p \leftrightarrow \sim q$ is true when			
	a) pandq both are true			
	b) Both p and q are false			
	c) p is false and q is true			
	d) None of these			
18.	Negation of "Pairs is in France and Londan is in England" is			
	a) Pairs is in England and Londan is in France			
	b) Pairs is not in France or Londan is not in England			
	c) Pairs is in England or Londan is in France			
	d) None of the above			
19.	If truth value of $p \lor q$ is true, then truth value of $\sim p \land q$ is			
	a) False if <i>p</i> is true	b) True if <i>p</i> is true	c) False if q is true	d) True if <i>q</i> is true
20	The logically equivalent proposition of $p \Leftrightarrow q$ is			
۷υ.	THE TOGICALLY EQUIVALED	ι proposition of $p \Leftrightarrow q$ is		